direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23×C7⋊D4, C25⋊2D7, D14⋊3C24, C24⋊12D14, C14.20C25, Dic7⋊2C24, C7⋊3(D4×C23), (C2×C14)⋊3C24, (C24×C14)⋊4C2, (D7×C24)⋊6C2, C14⋊3(C22×D4), (C22×C14)⋊19D4, C2.20(D7×C24), C23⋊6(C22×D7), C22⋊2(C23×D7), (C22×C14)⋊9C23, (C22×D7)⋊9C23, (C23×C14)⋊19C22, (C23×Dic7)⋊12C2, (C2×Dic7)⋊13C23, (C23×D7)⋊24C22, (C22×Dic7)⋊54C22, (C2×C14)⋊17(C2×D4), SmallGroup(448,1384)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23×C7⋊D4
G = < a,b,c,d,e,f | a2=b2=c2=d7=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=fdf=d-1, fef=e-1 >
Subgroups: 5252 in 1362 conjugacy classes, 543 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2×C4, D4, C23, C23, D7, C14, C14, C14, C22×C4, C2×D4, C24, C24, C24, Dic7, D14, D14, C2×C14, C2×C14, C23×C4, C22×D4, C25, C25, C2×Dic7, C7⋊D4, C22×D7, C22×D7, C22×C14, C22×C14, D4×C23, C22×Dic7, C2×C7⋊D4, C23×D7, C23×D7, C23×C14, C23×C14, C23×C14, C23×Dic7, C22×C7⋊D4, D7×C24, C24×C14, C23×C7⋊D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C25, C7⋊D4, C22×D7, D4×C23, C2×C7⋊D4, C23×D7, C22×C7⋊D4, D7×C24, C23×C7⋊D4
(1 120)(2 121)(3 122)(4 123)(5 124)(6 125)(7 126)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 134)(16 135)(17 136)(18 137)(19 138)(20 139)(21 140)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 148)(30 149)(31 150)(32 151)(33 152)(34 153)(35 154)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 162)(44 163)(45 164)(46 165)(47 166)(48 167)(49 168)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 161)(57 176)(58 177)(59 178)(60 179)(61 180)(62 181)(63 182)(64 169)(65 170)(66 171)(67 172)(68 173)(69 174)(70 175)(71 190)(72 191)(73 192)(74 193)(75 194)(76 195)(77 196)(78 183)(79 184)(80 185)(81 186)(82 187)(83 188)(84 189)(85 204)(86 205)(87 206)(88 207)(89 208)(90 209)(91 210)(92 197)(93 198)(94 199)(95 200)(96 201)(97 202)(98 203)(99 218)(100 219)(101 220)(102 221)(103 222)(104 223)(105 224)(106 211)(107 212)(108 213)(109 214)(110 215)(111 216)(112 217)
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 99)(16 100)(17 101)(18 102)(19 103)(20 104)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 64)(37 65)(38 66)(39 67)(40 68)(41 69)(42 70)(43 71)(44 72)(45 73)(46 74)(47 75)(48 76)(49 77)(50 78)(51 79)(52 80)(53 81)(54 82)(55 83)(56 84)(113 197)(114 198)(115 199)(116 200)(117 201)(118 202)(119 203)(120 204)(121 205)(122 206)(123 207)(124 208)(125 209)(126 210)(127 211)(128 212)(129 213)(130 214)(131 215)(132 216)(133 217)(134 218)(135 219)(136 220)(137 221)(138 222)(139 223)(140 224)(141 169)(142 170)(143 171)(144 172)(145 173)(146 174)(147 175)(148 176)(149 177)(150 178)(151 179)(152 180)(153 181)(154 182)(155 183)(156 184)(157 185)(158 186)(159 187)(160 188)(161 189)(162 190)(163 191)(164 192)(165 193)(166 194)(167 195)(168 196)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 71 8 78)(2 77 9 84)(3 76 10 83)(4 75 11 82)(5 74 12 81)(6 73 13 80)(7 72 14 79)(15 64 22 57)(16 70 23 63)(17 69 24 62)(18 68 25 61)(19 67 26 60)(20 66 27 59)(21 65 28 58)(29 99 36 106)(30 105 37 112)(31 104 38 111)(32 103 39 110)(33 102 40 109)(34 101 41 108)(35 100 42 107)(43 92 50 85)(44 98 51 91)(45 97 52 90)(46 96 53 89)(47 95 54 88)(48 94 55 87)(49 93 56 86)(113 183 120 190)(114 189 121 196)(115 188 122 195)(116 187 123 194)(117 186 124 193)(118 185 125 192)(119 184 126 191)(127 176 134 169)(128 182 135 175)(129 181 136 174)(130 180 137 173)(131 179 138 172)(132 178 139 171)(133 177 140 170)(141 211 148 218)(142 217 149 224)(143 216 150 223)(144 215 151 222)(145 214 152 221)(146 213 153 220)(147 212 154 219)(155 204 162 197)(156 210 163 203)(157 209 164 202)(158 208 165 201)(159 207 166 200)(160 206 167 199)(161 205 168 198)
(1 113)(2 119)(3 118)(4 117)(5 116)(6 115)(7 114)(8 120)(9 126)(10 125)(11 124)(12 123)(13 122)(14 121)(15 134)(16 140)(17 139)(18 138)(19 137)(20 136)(21 135)(22 127)(23 133)(24 132)(25 131)(26 130)(27 129)(28 128)(29 141)(30 147)(31 146)(32 145)(33 144)(34 143)(35 142)(36 148)(37 154)(38 153)(39 152)(40 151)(41 150)(42 149)(43 162)(44 168)(45 167)(46 166)(47 165)(48 164)(49 163)(50 155)(51 161)(52 160)(53 159)(54 158)(55 157)(56 156)(57 169)(58 175)(59 174)(60 173)(61 172)(62 171)(63 170)(64 176)(65 182)(66 181)(67 180)(68 179)(69 178)(70 177)(71 190)(72 196)(73 195)(74 194)(75 193)(76 192)(77 191)(78 183)(79 189)(80 188)(81 187)(82 186)(83 185)(84 184)(85 197)(86 203)(87 202)(88 201)(89 200)(90 199)(91 198)(92 204)(93 210)(94 209)(95 208)(96 207)(97 206)(98 205)(99 218)(100 224)(101 223)(102 222)(103 221)(104 220)(105 219)(106 211)(107 217)(108 216)(109 215)(110 214)(111 213)(112 212)
G:=sub<Sym(224)| (1,120)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,176)(58,177)(59,178)(60,179)(61,180)(62,181)(63,182)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,190)(72,191)(73,192)(74,193)(75,194)(76,195)(77,196)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,204)(86,205)(87,206)(88,207)(89,208)(90,209)(91,210)(92,197)(93,198)(94,199)(95,200)(96,201)(97,202)(98,203)(99,218)(100,219)(101,220)(102,221)(103,222)(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(113,197)(114,198)(115,199)(116,200)(117,201)(118,202)(119,203)(120,204)(121,205)(122,206)(123,207)(124,208)(125,209)(126,210)(127,211)(128,212)(129,213)(130,214)(131,215)(132,216)(133,217)(134,218)(135,219)(136,220)(137,221)(138,222)(139,223)(140,224)(141,169)(142,170)(143,171)(144,172)(145,173)(146,174)(147,175)(148,176)(149,177)(150,178)(151,179)(152,180)(153,181)(154,182)(155,183)(156,184)(157,185)(158,186)(159,187)(160,188)(161,189)(162,190)(163,191)(164,192)(165,193)(166,194)(167,195)(168,196), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,71,8,78)(2,77,9,84)(3,76,10,83)(4,75,11,82)(5,74,12,81)(6,73,13,80)(7,72,14,79)(15,64,22,57)(16,70,23,63)(17,69,24,62)(18,68,25,61)(19,67,26,60)(20,66,27,59)(21,65,28,58)(29,99,36,106)(30,105,37,112)(31,104,38,111)(32,103,39,110)(33,102,40,109)(34,101,41,108)(35,100,42,107)(43,92,50,85)(44,98,51,91)(45,97,52,90)(46,96,53,89)(47,95,54,88)(48,94,55,87)(49,93,56,86)(113,183,120,190)(114,189,121,196)(115,188,122,195)(116,187,123,194)(117,186,124,193)(118,185,125,192)(119,184,126,191)(127,176,134,169)(128,182,135,175)(129,181,136,174)(130,180,137,173)(131,179,138,172)(132,178,139,171)(133,177,140,170)(141,211,148,218)(142,217,149,224)(143,216,150,223)(144,215,151,222)(145,214,152,221)(146,213,153,220)(147,212,154,219)(155,204,162,197)(156,210,163,203)(157,209,164,202)(158,208,165,201)(159,207,166,200)(160,206,167,199)(161,205,168,198), (1,113)(2,119)(3,118)(4,117)(5,116)(6,115)(7,114)(8,120)(9,126)(10,125)(11,124)(12,123)(13,122)(14,121)(15,134)(16,140)(17,139)(18,138)(19,137)(20,136)(21,135)(22,127)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,141)(30,147)(31,146)(32,145)(33,144)(34,143)(35,142)(36,148)(37,154)(38,153)(39,152)(40,151)(41,150)(42,149)(43,162)(44,168)(45,167)(46,166)(47,165)(48,164)(49,163)(50,155)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,169)(58,175)(59,174)(60,173)(61,172)(62,171)(63,170)(64,176)(65,182)(66,181)(67,180)(68,179)(69,178)(70,177)(71,190)(72,196)(73,195)(74,194)(75,193)(76,192)(77,191)(78,183)(79,189)(80,188)(81,187)(82,186)(83,185)(84,184)(85,197)(86,203)(87,202)(88,201)(89,200)(90,199)(91,198)(92,204)(93,210)(94,209)(95,208)(96,207)(97,206)(98,205)(99,218)(100,224)(101,223)(102,222)(103,221)(104,220)(105,219)(106,211)(107,217)(108,216)(109,215)(110,214)(111,213)(112,212)>;
G:=Group( (1,120)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,176)(58,177)(59,178)(60,179)(61,180)(62,181)(63,182)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,190)(72,191)(73,192)(74,193)(75,194)(76,195)(77,196)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,204)(86,205)(87,206)(88,207)(89,208)(90,209)(91,210)(92,197)(93,198)(94,199)(95,200)(96,201)(97,202)(98,203)(99,218)(100,219)(101,220)(102,221)(103,222)(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(113,197)(114,198)(115,199)(116,200)(117,201)(118,202)(119,203)(120,204)(121,205)(122,206)(123,207)(124,208)(125,209)(126,210)(127,211)(128,212)(129,213)(130,214)(131,215)(132,216)(133,217)(134,218)(135,219)(136,220)(137,221)(138,222)(139,223)(140,224)(141,169)(142,170)(143,171)(144,172)(145,173)(146,174)(147,175)(148,176)(149,177)(150,178)(151,179)(152,180)(153,181)(154,182)(155,183)(156,184)(157,185)(158,186)(159,187)(160,188)(161,189)(162,190)(163,191)(164,192)(165,193)(166,194)(167,195)(168,196), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,71,8,78)(2,77,9,84)(3,76,10,83)(4,75,11,82)(5,74,12,81)(6,73,13,80)(7,72,14,79)(15,64,22,57)(16,70,23,63)(17,69,24,62)(18,68,25,61)(19,67,26,60)(20,66,27,59)(21,65,28,58)(29,99,36,106)(30,105,37,112)(31,104,38,111)(32,103,39,110)(33,102,40,109)(34,101,41,108)(35,100,42,107)(43,92,50,85)(44,98,51,91)(45,97,52,90)(46,96,53,89)(47,95,54,88)(48,94,55,87)(49,93,56,86)(113,183,120,190)(114,189,121,196)(115,188,122,195)(116,187,123,194)(117,186,124,193)(118,185,125,192)(119,184,126,191)(127,176,134,169)(128,182,135,175)(129,181,136,174)(130,180,137,173)(131,179,138,172)(132,178,139,171)(133,177,140,170)(141,211,148,218)(142,217,149,224)(143,216,150,223)(144,215,151,222)(145,214,152,221)(146,213,153,220)(147,212,154,219)(155,204,162,197)(156,210,163,203)(157,209,164,202)(158,208,165,201)(159,207,166,200)(160,206,167,199)(161,205,168,198), (1,113)(2,119)(3,118)(4,117)(5,116)(6,115)(7,114)(8,120)(9,126)(10,125)(11,124)(12,123)(13,122)(14,121)(15,134)(16,140)(17,139)(18,138)(19,137)(20,136)(21,135)(22,127)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,141)(30,147)(31,146)(32,145)(33,144)(34,143)(35,142)(36,148)(37,154)(38,153)(39,152)(40,151)(41,150)(42,149)(43,162)(44,168)(45,167)(46,166)(47,165)(48,164)(49,163)(50,155)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,169)(58,175)(59,174)(60,173)(61,172)(62,171)(63,170)(64,176)(65,182)(66,181)(67,180)(68,179)(69,178)(70,177)(71,190)(72,196)(73,195)(74,194)(75,193)(76,192)(77,191)(78,183)(79,189)(80,188)(81,187)(82,186)(83,185)(84,184)(85,197)(86,203)(87,202)(88,201)(89,200)(90,199)(91,198)(92,204)(93,210)(94,209)(95,208)(96,207)(97,206)(98,205)(99,218)(100,224)(101,223)(102,222)(103,221)(104,220)(105,219)(106,211)(107,217)(108,216)(109,215)(110,214)(111,213)(112,212) );
G=PermutationGroup([[(1,120),(2,121),(3,122),(4,123),(5,124),(6,125),(7,126),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,134),(16,135),(17,136),(18,137),(19,138),(20,139),(21,140),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,148),(30,149),(31,150),(32,151),(33,152),(34,153),(35,154),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,162),(44,163),(45,164),(46,165),(47,166),(48,167),(49,168),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,161),(57,176),(58,177),(59,178),(60,179),(61,180),(62,181),(63,182),(64,169),(65,170),(66,171),(67,172),(68,173),(69,174),(70,175),(71,190),(72,191),(73,192),(74,193),(75,194),(76,195),(77,196),(78,183),(79,184),(80,185),(81,186),(82,187),(83,188),(84,189),(85,204),(86,205),(87,206),(88,207),(89,208),(90,209),(91,210),(92,197),(93,198),(94,199),(95,200),(96,201),(97,202),(98,203),(99,218),(100,219),(101,220),(102,221),(103,222),(104,223),(105,224),(106,211),(107,212),(108,213),(109,214),(110,215),(111,216),(112,217)], [(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,99),(16,100),(17,101),(18,102),(19,103),(20,104),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,64),(37,65),(38,66),(39,67),(40,68),(41,69),(42,70),(43,71),(44,72),(45,73),(46,74),(47,75),(48,76),(49,77),(50,78),(51,79),(52,80),(53,81),(54,82),(55,83),(56,84),(113,197),(114,198),(115,199),(116,200),(117,201),(118,202),(119,203),(120,204),(121,205),(122,206),(123,207),(124,208),(125,209),(126,210),(127,211),(128,212),(129,213),(130,214),(131,215),(132,216),(133,217),(134,218),(135,219),(136,220),(137,221),(138,222),(139,223),(140,224),(141,169),(142,170),(143,171),(144,172),(145,173),(146,174),(147,175),(148,176),(149,177),(150,178),(151,179),(152,180),(153,181),(154,182),(155,183),(156,184),(157,185),(158,186),(159,187),(160,188),(161,189),(162,190),(163,191),(164,192),(165,193),(166,194),(167,195),(168,196)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,71,8,78),(2,77,9,84),(3,76,10,83),(4,75,11,82),(5,74,12,81),(6,73,13,80),(7,72,14,79),(15,64,22,57),(16,70,23,63),(17,69,24,62),(18,68,25,61),(19,67,26,60),(20,66,27,59),(21,65,28,58),(29,99,36,106),(30,105,37,112),(31,104,38,111),(32,103,39,110),(33,102,40,109),(34,101,41,108),(35,100,42,107),(43,92,50,85),(44,98,51,91),(45,97,52,90),(46,96,53,89),(47,95,54,88),(48,94,55,87),(49,93,56,86),(113,183,120,190),(114,189,121,196),(115,188,122,195),(116,187,123,194),(117,186,124,193),(118,185,125,192),(119,184,126,191),(127,176,134,169),(128,182,135,175),(129,181,136,174),(130,180,137,173),(131,179,138,172),(132,178,139,171),(133,177,140,170),(141,211,148,218),(142,217,149,224),(143,216,150,223),(144,215,151,222),(145,214,152,221),(146,213,153,220),(147,212,154,219),(155,204,162,197),(156,210,163,203),(157,209,164,202),(158,208,165,201),(159,207,166,200),(160,206,167,199),(161,205,168,198)], [(1,113),(2,119),(3,118),(4,117),(5,116),(6,115),(7,114),(8,120),(9,126),(10,125),(11,124),(12,123),(13,122),(14,121),(15,134),(16,140),(17,139),(18,138),(19,137),(20,136),(21,135),(22,127),(23,133),(24,132),(25,131),(26,130),(27,129),(28,128),(29,141),(30,147),(31,146),(32,145),(33,144),(34,143),(35,142),(36,148),(37,154),(38,153),(39,152),(40,151),(41,150),(42,149),(43,162),(44,168),(45,167),(46,166),(47,165),(48,164),(49,163),(50,155),(51,161),(52,160),(53,159),(54,158),(55,157),(56,156),(57,169),(58,175),(59,174),(60,173),(61,172),(62,171),(63,170),(64,176),(65,182),(66,181),(67,180),(68,179),(69,178),(70,177),(71,190),(72,196),(73,195),(74,194),(75,193),(76,192),(77,191),(78,183),(79,189),(80,188),(81,187),(82,186),(83,185),(84,184),(85,197),(86,203),(87,202),(88,201),(89,200),(90,199),(91,198),(92,204),(93,210),(94,209),(95,208),(96,207),(97,206),(98,205),(99,218),(100,224),(101,223),(102,222),(103,221),(104,220),(105,219),(106,211),(107,217),(108,216),(109,215),(110,214),(111,213),(112,212)]])
136 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2W | 2X | ··· | 2AE | 4A | ··· | 4H | 7A | 7B | 7C | 14A | ··· | 14CO |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 14 | ··· | 14 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | ··· | 2 |
136 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | D4 | D7 | D14 | C7⋊D4 |
kernel | C23×C7⋊D4 | C23×Dic7 | C22×C7⋊D4 | D7×C24 | C24×C14 | C22×C14 | C25 | C24 | C23 |
# reps | 1 | 1 | 28 | 1 | 1 | 8 | 3 | 45 | 48 |
Matrix representation of C23×C7⋊D4 ►in GL5(𝔽29)
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 |
0 | 0 | 0 | 1 | 3 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 5 | 2 |
0 | 0 | 0 | 16 | 24 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 26 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(29))| [1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,28,3],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,5,16,0,0,0,2,24],[28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,26,1] >;
C23×C7⋊D4 in GAP, Magma, Sage, TeX
C_2^3\times C_7\rtimes D_4
% in TeX
G:=Group("C2^3xC7:D4");
// GroupNames label
G:=SmallGroup(448,1384);
// by ID
G=gap.SmallGroup(448,1384);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,1684,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^7=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations